2014년 10월 20일 월요일

Á¶ÇÕ·Ğ ³ëÆ®Á¤¸® ´ëÇб³Àç¼Ö·ç¼Ç Down

Á¶ÇÕ·Ğ ³ëÆ®Á¤¸® ´ëÇб³Àç¼Ö·ç¼Ç Down



Á¶ÇÕ·Ğ ³ëÆ®Á¤¸® ´ëÇб³Àç¼Ö·ç¼Ç

Á¶ÇÕ·Ğ ³ëÆ®Á¤¸® - ¹Ì¸®º¸±â¸¦ Âü°í ¹Ù¶ø´Ï´Ù.

i¡¿©ö[Combinatorics]
2010A¢¯? V1Ae ?= ©­>¢¯ ? ? ©­

Contents
1. What is Combinatorics? 2. The Pigeonhole Principle ¡×2.1 The simple form of pigeonhole principle ¡×2.2 The strong form of pigeonhole principle 3. Permutations and Combinations ¡×3.1 Basic Counting Principles: Addition and Multiplication Principles ¡×3.2 Permutations Of sets ¡×3.3 Combinations Of sets ¡×3.4 Permutations Of Multi-sets ¡×2.5 Combinations Of Multi-sets ¡×2.6 Inversions In Permutations 4. The Binomial Coe?cients ¡×4.1 Pascal¡¯s Formula ¡×4.2 The Binomial Theorem ¡×4.3 Binomial Identities ¡×4.4 The Multinomial Theorem 5. The Inclusion-Exclusion Principle ¡×5.1 The Inclusion-Exclusion Principle ¡×5.2 Combinations With Repetition

2

6. Recurrence Relations ¡×6.1 The Fibonacci Sequence ¡×6.2 Iteration and Induction ¡×6.3 Homogeneous Recurrence relations ¡×6.4 Nonhomogeneous Recurrence relations 7. Generating Functions ¡×7.1 Generating Functions ¡×7.2 Partitions of Integers ¡×7.3 Exponential Generating Fun



ÀÚ·áÃâó : http://www.allreport.co.kr/search/detail.asp?pk=10978359&sid=knp868group1&key=%C1%B6%C7%D5%B7%D0



[¹®¼­Á¤º¸]

¹®¼­ºĞ·® : 100 Page
ÆÄÀÏÁ¾·ù : PDF ÆÄÀÏ
ÀÚ·áÁ¦¸ñ :
ÆÄÀÏÀ̸§ : Á¶ÇÕ·Ğ ³ëÆ®Á¤¸®.pdf
Å°¿öµå : ¼Ö·ç¼Ç,Á¶ÇÕ·Ğ,³ëÆ®Á¤¸®,´ëÇб³Àç¼Ö·ç¼Ç


댓글 없음:

댓글 쓰기